Title :
An Automatic Method for Ground Glass Opacity Nodule Detection and Segmentation from CT Studies
Author :
Zhou, Jinghao ; Chang, Sukmoon ; Metaxas, Dimitris N. ; Zhao, Binsheng ; Ginsberg, Michelle S. ; Schwartz, Lawrence H.
Author_Institution :
Dept. of Comput. Sci., Rutgers Univ., New Brunswick, NJ
fDate :
Aug. 30 2006-Sept. 3 2006
Abstract :
Ground glass opacity (GGO) is defined as hazy increased attenuation within a lung that is not associated with obscured underlying vessels. Since pure (non-solid) or mixed (partially solid) GGO at the thin-section CT are more likely to be malignant than those with solid opacity, early detection and treatment of GGO can improve a prognosis of lung cancer. However, due to indistinct boundaries and inter-or intra-observer variation, consistent manual detection and segmentation of GGO have proved to be problematic. In this paper, we propose a novel method for automatic detection and segmentation of GGO from chest CT images. For GGO detection, we develop a classifier by boosting k-nearest neighbor (k-NN), whose distance measure is the Euclidean distance between the nonparametric density estimates of two regions. The detected GGO region is then automatically segmented by analyzing the 3D texture likelihood map of the region. We applied our method to clinical chest CT volumes containing 10 GGO nodules. The proposed method detected all of the 10 nodules with only one false positive nodule. We also present the statistical validation of the proposed classifier for automatic GGO detection as well as very promising results for automatic GGO segmentation. The proposed method provides a new powerful tool for automatic detection as well as accurate and reproducible segmentation of GGO
Keywords :
cancer; computerised tomography; image classification; image segmentation; image texture; lung; medical image processing; nonparametric statistics; statistical analysis; tumours; 3D texture likelihood map; Euclidean distance; automatic method; chest CT images; ground glass opacity; k-nearest neighbor; lung cancer; lung nodule; nodule detection; nodule segmentation; nonparametric density estimates; solid opacity; statistical validation; thin-section CT; Attenuation; Boosting; Cancer detection; Computed tomography; Density measurement; Euclidean distance; Glass; Image segmentation; Lungs; Solids;
Conference_Titel :
Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE
Conference_Location :
New York, NY
Print_ISBN :
1-4244-0032-5
Electronic_ISBN :
1557-170X
DOI :
10.1109/IEMBS.2006.260285