DocumentCode :
4721
Title :
Automated Box-Cox Transformations for Improved Visual Encoding
Author :
Maciejewski, Ross ; Pattath, Avin ; Ko, Sungahn ; Hafen, Ryan ; Cleveland, William S. ; Ebert, David S.
Author_Institution :
Sch. of Comput., Arizona State Univ., Tempe, AZ, USA
Volume :
19
Issue :
1
fYear :
2013
fDate :
Jan. 2013
Firstpage :
130
Lastpage :
140
Abstract :
The concept of preconditioning data (utilizing a power transformation as an initial step) for analysis and visualization is well established within the statistical community and is employed as part of statistical modeling and analysis. Such transformations condition the data to various inherent assumptions of statistical inference procedures, as well as making the data more symmetric and easier to visualize and interpret. In this paper, we explore the use of the Box-Cox family of power transformations to semiautomatically adjust visual parameters. We focus on time-series scaling, axis transformations, and color binning for choropleth maps. We illustrate the usage of this transformation through various examples, and discuss the value and some issues in semiautomatically using these transformations for more effective data visualization.
Keywords :
data visualisation; inference mechanisms; statistical analysis; time series; automated box-cox transformations; axis transformations; choropleth maps; color binning; data preconditioning; data visualization; improved visual encoding; statistical analysis; statistical community; statistical inference procedures; statistical modeling; time-series scaling; Data visualization; Gaussian distribution; Histograms; Hospitals; Image color analysis; Transforms; Visualization; Box-Cox; Data transformation; Data visualization; Gaussian distribution; Histograms; Hospitals; Image color analysis; Transforms; Visualization; automated box-cox transformations; axis transformations; choropleth maps; color binning; color mapping; data preconditioning; data visualisation; data visualization; improved visual encoding; inference mechanisms; normal distribution; statistical analysis; statistical community; statistical inference procedures; statistical modeling; time series; time-series scaling;
fLanguage :
English
Journal_Title :
Visualization and Computer Graphics, IEEE Transactions on
Publisher :
ieee
ISSN :
1077-2626
Type :
jour
DOI :
10.1109/TVCG.2012.64
Filename :
6155715
Link To Document :
بازگشت