• DocumentCode
    472251
  • Title

    Neural-Network Detection of Hypoglycemic Episodes in Children with Type 1 Diabetes using Physiological Parameters

  • Author

    Nguyen, Hung T. ; Ghevondian, Nejhdeh ; Jones, Timothy W.

  • Author_Institution
    Key Univ. Res. Centre for Health Technol., Univ. of Technol., Sydney, NSW
  • fYear
    2006
  • fDate
    Aug. 30 2006-Sept. 3 2006
  • Firstpage
    6053
  • Lastpage
    6056
  • Abstract
    The most common and highly feared adverse effect of intensive insulin therapy in patients with diabetes is the increased risk of hypoglycemia. Symptoms of hypoglycemia arise from the activation of the autonomous central nervous systems and from reduced cerebral glucose consumption. HypoMon is a non-invasive monitor that measures some physiological parameters continuously to provide detection of hypoglycemic episodes in Type 1 diabetes mellitus patients (T1DM). Based on heart rate, corrected QT interval of the ECG signal and skin impedance, a neural network detection algorithm has been developed to recognize the presence of hypoglycemic episodes. From a clinical study of 21 children with T1DM, associated with hypoglycemic episodes, their heart rates increased (1.16plusmn0.16 vs. 1.03plusmn0.11, P<0.0001), their corrected QT intervals increased (1.09plusmn0.09 vs. 1.02plusmn0.07, P<0.0001) and their skin impedances reduced significantly (0.66plusmn0.19 vs. 0.82plusmn0.21, P<0.0001). The overall data were obtained and grouped into a training set, a validation set and a test set, each with 7 patients randomly selected. Using a feedforward multi-layer neural network with 9 hidden nodes, and an algorithm developed from the training set and the validation set, a sensitivity of 0.9516 and specificity of 0.4142 were achieved for the test set. A more advanced neural network algorithm will be developed to improve the specificity of test sets in the near future
  • Keywords
    bioelectric phenomena; biomedical measurement; electrocardiography; feedforward neural nets; medical computing; neurophysiology; paediatrics; patient monitoring; skin; ECG signal; HypoMon; QT interval; Type 1 diabetes mellitus patients; autonomous central nervous systems; cerebral glucose consumption; feedforward multilayer neural network; heart rate; hypoglycemic episodes detection; intensive insulin therapy; neural-network detection algorithm; noninvasive monitor; physiological parameters; skin impedance; Biological neural networks; Biomedical monitoring; Diabetes; Heart rate; Heart rate interval; Impedance; Insulin; Pediatrics; Skin; Testing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE
  • Conference_Location
    New York, NY
  • ISSN
    1557-170X
  • Print_ISBN
    1-4244-0032-5
  • Electronic_ISBN
    1557-170X
  • Type

    conf

  • DOI
    10.1109/IEMBS.2006.259482
  • Filename
    4463188