Title :
Evaluating the influence of parameter variations on multi-sensor tracking
Author :
De Theije, Pascal A M
Author_Institution :
Underwater Technol. Dept., TNO Defence, Security & Safety, The Hague
fDate :
June 30 2008-July 3 2008
Abstract :
In this paper we evaluate the influence of variations in the input parameters on the output of a multi-sensor tracking algorithm, using simulated data. The tracking algorithm is a classical Kalman filter using a probabilistic data association. The input to the tracker consists of contact files, each file containing all contacts identified for a specific per source / receiver / ping triplet. The input parameters that are varied are: 1) detection threshold used to identify the contacts, 2) ping repetition rate, 3) amplitude of contact position errors, 4) number of sensors used, 5) target signal-to-noise ratio, 6) relative ping time of sensors, and 7) waveform. A dasiastandardpsila set of tracker performance metrics is used to evaluate the tracker output and to look for trends in this output versus parameter values.
Keywords :
Kalman filters; probability; sensor fusion; target tracking; Kalman filter; detection threshold; multi-sensor tracking; parameter variations; ping repetition rate; probabilistic data association; simulated data; target signal-to-noise ratio; Kalman filtering; Tracking; data association; estimation; performance metrics;
Conference_Titel :
Information Fusion, 2008 11th International Conference on
Conference_Location :
Cologne
Print_ISBN :
978-3-8007-3092-6
Electronic_ISBN :
978-3-00-024883-2