DocumentCode :
477823
Title :
VTK: Vertical Mining of Top-Rank-K Frequent Patterns
Author :
Fang, Guo-dong ; Deng, Zhi-Hong
Author_Institution :
Sch. of Electron. Eng. & Comput. Sci., Peking Univ., Beijing
Volume :
2
fYear :
2008
fDate :
18-20 Oct. 2008
Firstpage :
620
Lastpage :
624
Abstract :
Mining top-rank-k frequent patterns is a new topic in frequent pattern mining. In this paper, we propose a new mining algorithm called VTK, vertical mining of Top-Rank-k frequent patterns, to mining Top-Rank-k frequent patterns using some vertical skills. Our performance study shows that the VTK method is more efficient and scalable for mining both synthetic datasets and real datasets than the algorithms proposed before.
Keywords :
data mining; VTK; top-rank-k frequent patterns; vertical pattern mining; Computer science; Data mining; Electronic mail; Filtering; Fuzzy systems; Knowledge engineering; Laboratories; Transaction databases; Data Mining; Frequent Patterns; Pattern Mining; Vertical Mining;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems and Knowledge Discovery, 2008. FSKD '08. Fifth International Conference on
Conference_Location :
Shandong
Print_ISBN :
978-0-7695-3305-6
Type :
conf
DOI :
10.1109/FSKD.2008.472
Filename :
4666191
Link To Document :
بازگشت