DocumentCode
478172
Title
Complexity of Functional Learning on Some Classes of Multivariate Functions
Author
Ye, Peixin ; He, Qing
Author_Institution
Sch. of Math. Sci. & LPMC, Nankai Univ., Tianjin
Volume
3
fYear
2008
fDate
18-20 Oct. 2008
Firstpage
141
Lastpage
144
Abstract
We study the error of the functional learning on anisotropic Sobolev classes Wp r (Id) and Holder-Nikolskiiclasses Hp r(Id) with respect to the worst case randomized methods and the average case deterministic methods, where 1 les p les infin. Our results show that if p ges 2 then the stochastic and average error bounds are essentially smaller than the deterministic ones. Quantitatively the improvement amounts to the factor n-1/2.
Keywords
computational complexity; learning (artificial intelligence); anisotropic Sobolev; functional learning complexity; multivariate functions; worst case randomized methods; Anisotropic magnetoresistance; Computational complexity; Cost function; Helium; Information processing; Laboratories; Monte Carlo methods; Numerical analysis; Random processes; Stochastic processes;
fLanguage
English
Publisher
ieee
Conference_Titel
Natural Computation, 2008. ICNC '08. Fourth International Conference on
Conference_Location
Jinan
Print_ISBN
978-0-7695-3304-9
Type
conf
DOI
10.1109/ICNC.2008.225
Filename
4667118
Link To Document