• DocumentCode
    478172
  • Title

    Complexity of Functional Learning on Some Classes of Multivariate Functions

  • Author

    Ye, Peixin ; He, Qing

  • Author_Institution
    Sch. of Math. Sci. & LPMC, Nankai Univ., Tianjin
  • Volume
    3
  • fYear
    2008
  • fDate
    18-20 Oct. 2008
  • Firstpage
    141
  • Lastpage
    144
  • Abstract
    We study the error of the functional learning on anisotropic Sobolev classes Wp r (Id) and Holder-Nikolskiiclasses Hp r(Id) with respect to the worst case randomized methods and the average case deterministic methods, where 1 les p les infin. Our results show that if p ges 2 then the stochastic and average error bounds are essentially smaller than the deterministic ones. Quantitatively the improvement amounts to the factor n-1/2.
  • Keywords
    computational complexity; learning (artificial intelligence); anisotropic Sobolev; functional learning complexity; multivariate functions; worst case randomized methods; Anisotropic magnetoresistance; Computational complexity; Cost function; Helium; Information processing; Laboratories; Monte Carlo methods; Numerical analysis; Random processes; Stochastic processes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Natural Computation, 2008. ICNC '08. Fourth International Conference on
  • Conference_Location
    Jinan
  • Print_ISBN
    978-0-7695-3304-9
  • Type

    conf

  • DOI
    10.1109/ICNC.2008.225
  • Filename
    4667118