DocumentCode :
478317
Title :
Topological Ergodicity and Mixing for a Class of Set-Valued Discrete Dynamical System
Author :
Wang, Lidong ; Huang, Guifeng ; Tang, Shi ; Chen, Zhizhi
Author_Institution :
Coll. of Sci., Dalian Nat. Univ., Dalian
Volume :
4
fYear :
2008
fDate :
18-20 Oct. 2008
Firstpage :
692
Lastpage :
695
Abstract :
In this paper, we prove that there exists a subsystem of a one-sided symbolic space with two symbols such that the set-valued map on it is topologically ergodic, topologically double ergodic, topologically transitive and topologically weakly mixing.
Keywords :
differential geometry; discrete systems; set theory; one-sided symbolic space; set-valued discrete dynamical system; topological ergodicity; Biological system modeling; Birds; Educational institutions; Helium; Mathematical model; Mathematics; Numerical simulation; Orbits; Organisms; Personnel;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Natural Computation, 2008. ICNC '08. Fourth International Conference on
Conference_Location :
Jinan
Print_ISBN :
978-0-7695-3304-9
Type :
conf
DOI :
10.1109/ICNC.2008.527
Filename :
4667372
Link To Document :
بازگشت