DocumentCode
478683
Title
Real-coded genetic algorithms and nonlinear parameter identification
Author
Sorsa, Aki ; Peltokangas, Riikka ; Leiviskä, Kauko
Author_Institution
Control Eng. Lab., Univ. of Oulu, Oulu
Volume
2
fYear
2008
fDate
6-8 Sept. 2008
Firstpage
15615
Lastpage
17441
Abstract
In this study, real-coded genetic algorithms are used in the parameter identification of the macroscopic Chemostat model. The Chemostat model utilized in this work is nonlinear having two distinct operating areas. Thus, the model is identified separately for both operating areas. The process simulator is used to generate data for the parameter identification. The optimizations with genetic algorithms are repeated with 200 different initial populations to guarantee the validity of the results. The parameter identification with genetic algorithms performs well giving accurate results.
Keywords
genetic algorithms; parameter estimation; macroscopic Chemostat model; nonlinear parameter identification; real-coded genetic algorithms; Biological cells; Biological processes; Biological system modeling; Continuous-stirred tank reactor; Couplings; Genetic algorithms; Genetic mutations; Intelligent structures; Intelligent systems; Parameter estimation; Chemostat model; genetic algorithms; parameter identification;
fLanguage
English
Publisher
ieee
Conference_Titel
Intelligent Systems, 2008. IS '08. 4th International IEEE Conference
Conference_Location
Varna
Print_ISBN
978-1-4244-1739-1
Electronic_ISBN
978-1-4244-1740-7
Type
conf
DOI
10.1109/IS.2008.4670495
Filename
4670495
Link To Document