Title : 
Real-coded genetic algorithms and nonlinear parameter identification
         
        
            Author : 
Sorsa, Aki ; Peltokangas, Riikka ; Leiviskä, Kauko
         
        
            Author_Institution : 
Control Eng. Lab., Univ. of Oulu, Oulu
         
        
        
        
        
        
        
            Abstract : 
In this study, real-coded genetic algorithms are used in the parameter identification of the macroscopic Chemostat model. The Chemostat model utilized in this work is nonlinear having two distinct operating areas. Thus, the model is identified separately for both operating areas. The process simulator is used to generate data for the parameter identification. The optimizations with genetic algorithms are repeated with 200 different initial populations to guarantee the validity of the results. The parameter identification with genetic algorithms performs well giving accurate results.
         
        
            Keywords : 
genetic algorithms; parameter estimation; macroscopic Chemostat model; nonlinear parameter identification; real-coded genetic algorithms; Biological cells; Biological processes; Biological system modeling; Continuous-stirred tank reactor; Couplings; Genetic algorithms; Genetic mutations; Intelligent structures; Intelligent systems; Parameter estimation; Chemostat model; genetic algorithms; parameter identification;
         
        
        
        
            Conference_Titel : 
Intelligent Systems, 2008. IS '08. 4th International IEEE Conference
         
        
            Conference_Location : 
Varna
         
        
            Print_ISBN : 
978-1-4244-1739-1
         
        
            Electronic_ISBN : 
978-1-4244-1740-7
         
        
        
            DOI : 
10.1109/IS.2008.4670495