• DocumentCode
    478683
  • Title

    Real-coded genetic algorithms and nonlinear parameter identification

  • Author

    Sorsa, Aki ; Peltokangas, Riikka ; Leiviskä, Kauko

  • Author_Institution
    Control Eng. Lab., Univ. of Oulu, Oulu
  • Volume
    2
  • fYear
    2008
  • fDate
    6-8 Sept. 2008
  • Firstpage
    15615
  • Lastpage
    17441
  • Abstract
    In this study, real-coded genetic algorithms are used in the parameter identification of the macroscopic Chemostat model. The Chemostat model utilized in this work is nonlinear having two distinct operating areas. Thus, the model is identified separately for both operating areas. The process simulator is used to generate data for the parameter identification. The optimizations with genetic algorithms are repeated with 200 different initial populations to guarantee the validity of the results. The parameter identification with genetic algorithms performs well giving accurate results.
  • Keywords
    genetic algorithms; parameter estimation; macroscopic Chemostat model; nonlinear parameter identification; real-coded genetic algorithms; Biological cells; Biological processes; Biological system modeling; Continuous-stirred tank reactor; Couplings; Genetic algorithms; Genetic mutations; Intelligent structures; Intelligent systems; Parameter estimation; Chemostat model; genetic algorithms; parameter identification;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Systems, 2008. IS '08. 4th International IEEE Conference
  • Conference_Location
    Varna
  • Print_ISBN
    978-1-4244-1739-1
  • Electronic_ISBN
    978-1-4244-1740-7
  • Type

    conf

  • DOI
    10.1109/IS.2008.4670495
  • Filename
    4670495