• DocumentCode
    479742
  • Title

    Statistical Default Inference Based on DFL

  • Author

    Zhang Min

  • Author_Institution
    Coll. of Comput. Eng., Jimei Univ., Xiamen
  • Volume
    1
  • fYear
    2008
  • fDate
    12-14 Dec. 2008
  • Firstpage
    172
  • Lastpage
    175
  • Abstract
    Statistical default logic is an expansion of classical (i.e. Reiter´s) default logic that allows us to model common inference patterns found in standard inferential statistics, which is an expansion with an error-bound parameter. This paper proposes statistical default inference based on dynamic fuzzy logic (DFL) and constructs a method of computing extensions of fuzzy statistical default theory.
  • Keywords
    fuzzy logic; fuzzy set theory; inference mechanisms; statistical analysis; DFL; Reiter´s default logic; error-bound parameter; fuzzy statistical default theory; inference patterns; inferential statistics; statistical default inference; statistical default logic; Artificial intelligence; Computer errors; Computer science; Educational institutions; Error analysis; Fuzzy logic; Software engineering; Dynamic Fuzzy Logic; Fuzzy Statistical Default Extension; Statistical Default Inference;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Science and Software Engineering, 2008 International Conference on
  • Conference_Location
    Wuhan, Hubei
  • Print_ISBN
    978-0-7695-3336-0
  • Type

    conf

  • DOI
    10.1109/CSSE.2008.765
  • Filename
    4721719