DocumentCode :
480696
Title :
U3 - Mning Unordered Embedded Subtrees Using TMG Candidate Generation
Author :
Hadzic, Fedja ; Tan, Henry ; Dillon, Tharam S.
Author_Institution :
Digital Ecosyst. & Bus. Intell. Inst., Curtin Univ. of Technol., Perth, WA
Volume :
1
fYear :
2008
fDate :
9-12 Dec. 2008
Firstpage :
285
Lastpage :
292
Abstract :
In this paper we present an algorithm for mining of unordered embedded subtrees. This is an important problem for association rule mining from semi-structured documents, and it has important applications in many biomedical, Web and scientific domains. The proposed U3 algorithm is an extension of our general tree model guided (TMG) candidate generation framework and it considers both transaction based and occurrence match support. Synthetic and real world data sets are used to experimentally demonstrate the efficiency of our approach to the problem, and the flexibility of our general TMG framework.
Keywords :
data mining; document handling; tree data structures; U3 algorithm; association rule mining; semistructured document; tree model guided candidate generation; unordered embedded subtrees; Association rules; Australia; Bioinformatics; Character generation; Data mining; Databases; Ecosystems; Intelligent agent; Tree data structures; XML; Canonical Form; TMG; Tree Mining; Unordered Embedded Subtrees;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT '08. IEEE/WIC/ACM International Conference on
Conference_Location :
Sydney, NSW
Print_ISBN :
978-0-7695-3496-1
Type :
conf
DOI :
10.1109/WIIAT.2008.403
Filename :
4740462
Link To Document :
بازگشت