DocumentCode :
480751
Title :
Long Tail Recommender Utilizing Information Diffusion Theory
Author :
Ishikawa, Masayuki ; Geczy, Peter ; Izumi, Noriaki ; Yamaguchi, Takahira
Author_Institution :
Kei Univ., Yokohama
Volume :
1
fYear :
2008
fDate :
9-12 Dec. 2008
Firstpage :
785
Lastpage :
788
Abstract :
Our approach aims to provide a mechanism for recommending long tail items to knowledge workers. The approach employs collaborative filtering using browsing features of identified key population of the diffusion of information. We conducted analytic experiment for a novel recommendation algorithm based on the browsing features of identified selected users and discovered that the first 10 users accessing a particular page play the key role in information spread. The evaluation indicated that our approach is effective for long tail recommendation.
Keywords :
electronic commerce; groupware; information filtering; search engines; statistical analysis; browsing feature; collaborative filtering engine; electronic commerce; information diffusion theory; knowledge sharing; long tail item recommendation algorithm; Collaborative work; Databases; Information analysis; Information filtering; Information filters; Intelligent agent; Marketing and sales; Probability distribution; Technological innovation; Uniform resource locators; Collaborative filtering; Information Diffusion; Innovator Theory; Knowledge management technology; Long Tail; Recommender System;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT '08. IEEE/WIC/ACM International Conference on
Conference_Location :
Sydney, NSW
Print_ISBN :
978-0-7695-3496-1
Type :
conf
DOI :
10.1109/WIIAT.2008.352
Filename :
4740549
Link To Document :
بازگشت