• DocumentCode
    48207
  • Title

    18% Efficiency IBC Cell With Rear-Surface Processed on Quartz

  • Author

    Dross, Frederic ; O´Sullivan, Barry ; Debucquoy, Maarten ; Bearda, T. ; Govaerts, Jonathan ; Labie, R. ; Loozen, X. ; Granata, S. ; El Daif, Ounsi ; Trompoukis, Christos ; Van Nieuwenhuysen, Kris ; Meuris, Marc ; Gordon, I. ; Posthuma, N. ; Baert, K. ; Po

  • Author_Institution
    Hanwha Solar America, Santa Clara, CA, USA
  • Volume
    3
  • Issue
    2
  • fYear
    2013
  • fDate
    Apr-13
  • Firstpage
    684
  • Lastpage
    689
  • Abstract
    In order to relax the mechanical constraints of processing thin crystalline Si wafers into highly efficient solar cells, we propose a process sequence, where a significant part of the process is done on module level. The device structure is an interdigitated-back-contact cell with an amorphous silicon back surface field. The record cell reaches an independently confirmed efficiency of 18.4%. Although the device deserves further optimization, the result shows the compatibility of processing on glass with efficiencies exceeding 18%, which opens the door to a high-efficiency solar cell process where the potentially thin wafer is attached to a foreign carrier during the full processing sequence.
  • Keywords
    amorphous semiconductors; elemental semiconductors; silicon; solar cells; IBC cell; Si; SiO2; amorphous silicon back surface field; device structure; efficiency 18 percent; efficiency 18.4 percent; foreign carrier; high-efficiency solar cell process; interdigitated-back-contact cell; mechanical constraints; module level; thin crystalline wafers; Glass; Indium tin oxide; Metallization; Passivation; Photovoltaic cells; Silicon; Crystalline-Si; interdigitated-back-contact (IBC) cells; superstrate processing;
  • fLanguage
    English
  • Journal_Title
    Photovoltaics, IEEE Journal of
  • Publisher
    ieee
  • ISSN
    2156-3381
  • Type

    jour

  • DOI
    10.1109/JPHOTOV.2013.2239359
  • Filename
    6457404