DocumentCode :
483682
Title :
A model-based voice Activity Detection algorithm using probabilistic neural networks
Author :
Farsinejad, M. ; Mohammadi, M. ; Nasersharif, Babak ; Akbari, A.
Author_Institution :
Dept. of Comput. Eng., Iran Univ. of Sci. & Technol., Tehran, Iran
fYear :
2008
fDate :
14-16 Oct. 2008
Firstpage :
1
Lastpage :
4
Abstract :
In this paper we introduce an efficient probabilistic neural networks (PNN) model-based voice activity detection (VAD) algorithm. The inputs for PNN are code excited linear prediction coder parameters, which are stable under background noise. The PNN network output is 1 or 0 to determine the nature of the period (speech or NonSpeech). Experimental results show that the proposed VAD algorithm achieves better performance than G.729 Annex B at any noise level. The performance compares very favorably with Adaptive MultiRate VAD, phase 2 (AMR2).
Keywords :
linear predictive coding; neural nets; speech coding; vocoders; PNN model-based voice activity detection algorithm; VAD algorithm; code excited linear prediction coder parameters; probabilistic neural network; Background noise; Computer networks; Detection algorithms; MATLAB; Mathematical model; Neural networks; Neurons; Noise level; Speech coding; Transfer functions; PNN-VAD; Voice activity detection; probabilistic neural networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications, 2008. APCC 2008. 14th Asia-Pacific Conference on
Conference_Location :
Tokyo
Print_ISBN :
978-4-88552-232-1
Electronic_ISBN :
978-4-88552-231-4
Type :
conf
Filename :
4773847
Link To Document :
بازگشت