DocumentCode :
484542
Title :
Semi-Supervised Remote Sensing Image Classification based on Clustering and the Mean Map Kernel
Author :
Gómez-Chova, L. ; Bruzzone, L. ; Camps-Valls, G. ; Calpe-Maravilla, J.
Author_Institution :
Dept. of Electron. Eng., Univ. of Valencia, Valencia
Volume :
4
fYear :
2008
fDate :
7-11 July 2008
Abstract :
This paper presents a semi-supervised classifier based on the combination of the expectation-maximization (EM) algorithm for Gaussian mixture models (GMM) and the mean map kernel. The proposed method uses the most reliable samples in terms of maximum likelihood to compute a kernel function that accurately reflects the similarity between clusters in the kernel space. The proposed method improves classification accuracy in situations where the available labeled information does not properly describe the classes in the test image.
Keywords :
geophysical techniques; geophysics computing; image classification; remote sensing; support vector machines; GMM; Gaussian mixture models; expectation-maximization algorithm; image classification; kernel function; maximum likelihood; mean map kernel; semisupervised classifier; semisupervised learning; supervised support vector machines; Clouds; Clustering algorithms; Computer science; Data engineering; Image classification; Kernel; Maximum likelihood detection; Remote sensing; Satellites; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International
Conference_Location :
Boston, MA
Print_ISBN :
978-1-4244-2807-6
Electronic_ISBN :
978-1-4244-2808-3
Type :
conf
DOI :
10.1109/IGARSS.2008.4779740
Filename :
4779740
Link To Document :
بازگشت