• DocumentCode
    48747
  • Title

    Characterization of Negabent Functions and Construction of Bent-Negabent Functions With Maximum Algebraic Degree

  • Author

    Wei Su ; Pott, Andreas ; Xiaohu Tang

  • Author_Institution
    Inf. Security & Nat. Comput. Grid Lab., Southwest Jiaotong Univ., Chengdu, China
  • Volume
    59
  • Issue
    6
  • fYear
    2013
  • fDate
    Jun-13
  • Firstpage
    3387
  • Lastpage
    3395
  • Abstract
    We present necessary and sufficient conditions for a Boolean function to be a negabent function for both an even and an odd number of variables, which demonstrates the relationship between negabent functions and bent functions. By using these necessary and sufficient conditions for Boolean functions to be negabent, we obtain that the nega spectrum of a negabent function has at most four values. We determine the nega spectrum distribution of negabent functions. Further, we provide a method to construct bent-negabent functions in n variables (n even) of algebraic degree ranging from 2 to [(n)/2], which implies that the maximum algebraic degree of an n-variable bent-negabent function is equal to [(n)/2]. Thus, we answer two open problems proposed by Parker and Pott and by Stănică et al.
  • Keywords
    Boolean functions; Boolean function; maximum algebraic degree; n-variable bent-negabent function; negabent functions; Boolean functions; Educational institutions; Hamming weight; Jacobian matrices; Tensile stress; Transforms; Vectors; Bent function; Boolean function; Walsh–Hadamard transform; bent-negabent function; nega-Hadamard transform; negabent function;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2013.2245938
  • Filename
    6457455