• DocumentCode
    487517
  • Title

    Parameter Partitioning via Shaping Conditions for the Stability of Families of Polynomials

  • Author

    Djaferis, T.E. ; Hollot, C.V.

  • Author_Institution
    Electrical and Computer Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003
  • fYear
    1988
  • fDate
    15-17 June 1988
  • Firstpage
    1878
  • Lastpage
    1883
  • Abstract
    Let ¿(s,a) = ¿0(s) + q(s,a) be a family of polynomials in s, with coefficients which are continuous functions in the real k-vector parameter a, where a lies in the hyperectangle ¿a in Rk with O¿¿a. Assume further that the leading coefficient in s of ¿(s,a) is independent of a, ¿0 is stable and that q(s,O) = 0. It is shown that if a parameter partition exists, defined by certain shaping conditions, the locus of q(jw,a) in the complex plane for each frequency ¿, - ¿ ≪ ¿ ≪ ¿ as a varies in ¿a is a polytope. This facilitates the study of robust stability for a large class of systems and leads to simple conditions for stability of families of polynomials.
  • Keywords
    Frequency domain analysis; Polynomials; Robust stability; Robustness; Sufficient conditions; Testing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 1988
  • Conference_Location
    Atlanta, Ga, USA
  • Type

    conf

  • Filename
    4790033