• DocumentCode
    488129
  • Title

    Convexity Property of the One-sided Multivariable Stability Margin

  • Author

    Tekawy, Jonathan A. ; Safonov, Michael G. ; Chiang, Richard Y.

  • Author_Institution
    Control Research, Northrop Corporation, Hawthorne, CA 90250
  • fYear
    1990
  • fDate
    23-25 May 1990
  • Firstpage
    161
  • Lastpage
    162
  • Abstract
    In evaluating the stability robustness of multivariable control systems having "one-sided" parameter uncertainty, a problem that naturally arises is the minimization over diagonal matrices D of the greatest eigenvalue of (eD Ae-D + (eD Ae-D)*)/2. The minimization is proved to be convex, thus guaranteeing that every local minimum, is also a global minimum and, in theory, guaranteeing the global convergence of generalised gradient nonlinear programming algorithms for computing the minimizing D.
  • Keywords
    Control systems; Eigenvalues and eigenfunctions; Minimization methods; Robust control; Robust stability; Robustness; Stability criteria; Taylor series; Uncertain systems; Uncertainty;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 1990
  • Conference_Location
    San Diego, CA, USA
  • Type

    conf

  • Filename
    4790719