• DocumentCode
    489606
  • Title

    On Using the Parameter Covariance for Improving the Recursive Least-Squares Algorithm

  • Author

    Ramambason, O.C. ; Crisalle, O.D. ; Bonvin, D.

  • Author_Institution
    Institute d´´Automatique, Ecole Polytechnique F?d?rale de Lausanne, CH - 1015 LAUSANNE, Switzerland
  • fYear
    1992
  • fDate
    24-26 June 1992
  • Firstpage
    1431
  • Lastpage
    1435
  • Abstract
    Normally, the gain matrix P(t) of the recursive least-squares algorithm has to be adjusted when parameter variations are detected. In this work, an on-line estimation of the parameter covariance Q(t) is proposed for this adjustment on the basis of the prediction error ¿(t). Simulation results of a process with time-varying parameters show that on-line auto-adaptation of this covariance brings better results compared to the use of a forgetting factor or the blind choice of an additionnal term to the gain matrix.
  • Keywords
    Chemical engineering; Covariance matrix; Filters; Linear regression; Parameter estimation; Proposals; Resonance light scattering; Silicon compounds; State estimation; Time varying systems;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 1992
  • Conference_Location
    Chicago, IL, USA
  • Print_ISBN
    0-7803-0210-9
  • Type

    conf

  • Filename
    4792339