Title : 
The Stabilization of a Linearized Self-Excited Wave Equation by an Energy Absorbing Boundary
         
        
            Author : 
Sarhangi, G.R. ; Najafi, M. ; Wang, H.
         
        
            Author_Institution : 
Department of Mathematics and Statistics, The Wichita State University, Wichita, KS 67208-1595
         
        
        
        
        
        
            Abstract : 
We study the linearised self-excited wave equation xtt - ¿ x-P(x) xt=0, where P(x)¿0, P(x) L¿(¿), in a bounded domain ¿ ¿ Rn with smooth boundary ¿ where boundary damping is present. Considering the partition {¿+, ¿-} of the boundary ¿ on which x=0 on ¿, and un+ Kut + Lu= 0, on ¿, we find two different bounds for P such that the energy decays exponentially in the energy space as t tends to infinity (Here we assume ¿+ ¿ ¿- = ¿ for n ≫ 3). Both bounds depend on ¿ (The domain of wave equation in Rn, n ¿ 1). The second bound also depends on the feed-back functions K,L L¿(¿+) or more precisely depends on a positive function k(x) L¿(¿+) which determines K and L on the partition ¿+.
         
        
            Keywords : 
Chromium; Damping; H infinity control; Neodymium; Partial differential equations;
         
        
        
        
            Conference_Titel : 
American Control Conference, 1992
         
        
            Conference_Location : 
Chicago, IL, USA
         
        
            Print_ISBN : 
0-7803-0210-9