• DocumentCode
    49478
  • Title

    Spatial Locality Speculation to Reduce Energy in Chip-Multiprocessor Networks-on-Chip

  • Author

    Hyungjun Kim ; Grot, Boris ; Gratz, Paul V. ; Jimenez, D.A.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA
  • Volume
    63
  • Issue
    3
  • fYear
    2014
  • fDate
    Mar-14
  • Firstpage
    543
  • Lastpage
    556
  • Abstract
    As processor chips become increasingly parallel, an efficient communication substrate is critical for meeting performance and energy targets. In this work, we target the root cause of network energy consumption through techniques that reduce link and router-level switching activity. We specifically focus on memory subsystem traffic, as it comprises the bulk of NoC load in a CMP. By transmitting only the flits that contain words predicted useful using a novel spatial locality predictor, our scheme seeks to reduce network activity. We aim to further lower NoC energy through microarchitectural mechanisms that inhibit datapath switching activity for unused words in individual flits. Using simulation-based performance studies and detailed energy models based on synthesized router designs and different link wire types, we show that 1) the prediction mechanism achieves very high accuracy, with an average rate of false-unused prediction of just 2.5 percent; 2) the combined NoC energy savings enabled by the predictor and microarchitectural support is 36 percent, on average, and up to 57 percent in the best case; and 3) there is no system performance penalty as a result of this technique.
  • Keywords
    microprocessor chips; multiprocessor interconnection networks; network routing; network-on-chip; power aware computing; CMP; NoC energy savings; NoC load; chip-multiprocessor networks-on-chip; communication substrate; datapath switching activity; energy reduction; false-unused prediction; memory subsystem traffic; microarchitectural mechanism; network activity; network energy consumption; processor chips; router-level switching activity; spatial locality predictor; spatial locality speculation; synthesized router designs; system performance penalty; Encoding; Energy consumption; Memory management; Radiation detectors; Switches; Vectors; Wires; Power management; cache memory; interconnections; spatial locality;
  • fLanguage
    English
  • Journal_Title
    Computers, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9340
  • Type

    jour

  • DOI
    10.1109/TC.2012.238
  • Filename
    6319291