Title :
A Stochastic Hybrid Optimization Algorithm to Calibration Conceptual Hydrologic Model Parameters
Author :
Hao, Zhen-Chun ; Du, Fu-hui
Author_Institution :
State Key Lab. of Water Resources & Hydropower Eng. Sci., Hohai Univ., Nanjing, China
Abstract :
Combining the approximate gradient-based steepest descent algorithm and the pattern search algorithm the author present GP algorithm, a new local optimization algorithm for conceptual hydrologic model parameters. with Nash facticity coefficient as the target function the random search techniques was used for search parameter space, then optimize the selected parameter set using GP algorithm. The global optimization parameter is achieved by filtering parameter space strategy. The method above-mentioned comprise the derivative information and stochastic properties, make the optimization set escape the local maximum to the global set. The practical efficiency was verified by using a case in Yang Lou unite drainage basin. It was shown that parameters of hydrologic model can successfully be automatically calibrated.
Keywords :
game theory; gradient methods; hydrology; optimisation; search problems; stochastic processes; GP algorithm; Nash facticity coefficient; Yang Lou unite drainage basin; approximate gradient-based steepest descent algorithm; conceptual hydrologic model parameters; filtering parameter space strategy; pattern search algorithm; random search technique; search parameter space; stochastic hybrid optimization algorithm; Calibration; Electronic mail; Filtering; Gradient methods; Hydroelectric power generation; Laboratories; Optimization methods; Response surface methodology; Stochastic processes; Water resources; GP algorithm; Xinanjiang model; parameters calibration; stochastic optimization;
Conference_Titel :
Information and Computing Science, 2009. ICIC '09. Second International Conference on
Conference_Location :
Manchester
Print_ISBN :
978-0-7695-3634-7
DOI :
10.1109/ICIC.2009.218