DocumentCode :
495008
Title :
Design of a Two Layers Support Vector Machine for Classification
Author :
Xiusheng Duan ; Ganlin Shan ; Qilong Zhang
Author_Institution :
Ordnance Eng. Coll., Shijiazhuang, China
Volume :
3
fYear :
2009
fDate :
21-22 May 2009
Firstpage :
247
Lastpage :
250
Abstract :
The idea of support vector machine (SVM) is to project the primal data which are not separable in the primal space into a new high dimensional feature space by a nonlinear function, so that the data can be separated in the new space correctly. But sometimes the result is not satisfied. In order to improve the accuracy, a two-layer SVM is put forward in the paper. Through mapping the primal data into a much higher dimensional space by nonlinear function for two times, the data could be separated in the final feature space as most as possible. A new kernel function is also deduced from two layers SVM which can also satisfy the Mercer theorem. The algorithm is deducted, proved and simulated in detail. The complexity of SVM is not increased, but the classification accuracy can be improved by this means.
Keywords :
classification; data analysis; nonlinear functions; support vector machines; classification; feature space; nonlinear function; primal data; support vector machine; Data engineering; Design engineering; Educational institutions; Kernel; Learning systems; Optimization methods; Risk management; Statistical learning; Support vector machine classification; Support vector machines; Classification; Nonlinear function; Project; Two-Layer Support Vector Machine;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information and Computing Science, 2009. ICIC '09. Second International Conference on
Conference_Location :
Manchester
Print_ISBN :
978-0-7695-3634-7
Type :
conf
DOI :
10.1109/ICIC.2009.268
Filename :
5168851
Link To Document :
بازگشت