DocumentCode :
496255
Title :
Dimensions of Bivariate Quintic Spline Spaces over Generalized Type-II Triangulations
Author :
Luo, Xuqiong ; Liu, HuanWen
Author_Institution :
Fac. of Math. & Comput. Sci., Guangxi Univ. for Nat., Nanning, China
Volume :
1
fYear :
2009
fDate :
24-26 April 2009
Firstpage :
119
Lastpage :
122
Abstract :
In this paper, a class of four-corner quadrangulation is introduced, which is homeomorphic to a rectangular partition of a retangle. Then, by adding two diagonals of each quadrilateral in four-corner quadrangulation, a generalized type-II triangulation is obtained. By using the method of Bozier-net, a minimal determining set for bivariate quintic spline space over generalized type-II triangulation is constructed and dimensions of bivariate quintic spline space over generalized type-II triangulation are given.
Keywords :
polynomials; set theory; splines (mathematics); Bezier-net; bivariate quintic spline spaces; four-corner quadrangulations; generalized type-II triangulations; minimal determining set; rectangular partition; Computer science; Mathematics; Polynomials; Spline; Bivariate quintic spline spaces; Generalized type-II triangulations; Minimal determining set;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Sciences and Optimization, 2009. CSO 2009. International Joint Conference on
Conference_Location :
Sanya, Hainan
Print_ISBN :
978-0-7695-3605-7
Type :
conf
DOI :
10.1109/CSO.2009.202
Filename :
5193656
Link To Document :
بازگشت