DocumentCode :
498354
Title :
Parameter Estimation Using an Adaptive Immune Clone Selection Algorithm
Author :
Liu, Zhang ; Tang, Hesheng ; Fan, Cunxin
Author_Institution :
Res. Inst. of Struct. Eng. & Disaster Reduction, Tongji Univ., Shanghai, China
Volume :
2
fYear :
2009
fDate :
19-21 May 2009
Firstpage :
58
Lastpage :
63
Abstract :
A novel Artificial Immune Algorithm, namely Adaptive Immune Clone Selection Algorithm is proposed in this paper for parameter estimation which can be formulated as a multi-modal optimization problem with high dimension. In this method the secondary response, adaptive mutation regulation and vaccination operator are introduced in the generic Clone Selection Algorithm to improve the convergence speed and global optimum searching ability. Simulation results for identifying the parameters of a dynamic system are presented to demonstrate the effectiveness of the proposed method.
Keywords :
artificial immune systems; parameter estimation; adaptive immune clone selection; adaptive mutation regulation; artificial immune algorithm; convergence speed; generic clone selection; multimodal optimization; parameter estimation; secondary response; vaccination operator; Artificial intelligence; Biological system modeling; Civil engineering; Cloning; Genetic mutations; IIR filters; Immune system; Intelligent systems; Parameter estimation; System identification; Adaptive Immune Clone Selection Algorithm; Artificial Immune Algorithm; Parameter estimation; System identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems, 2009. GCIS '09. WRI Global Congress on
Conference_Location :
Xiamen
Print_ISBN :
978-0-7695-3571-5
Type :
conf
DOI :
10.1109/GCIS.2009.84
Filename :
5209232
Link To Document :
بازگشت