• DocumentCode
    498929
  • Title

    Clustering web search results using semantic information

  • Author

    Wen, Han ; Huang, Guo-shun ; Li, Zhao

  • Author_Institution
    Sch. of Sci., FOSHAN Univ., Foshan, China
  • Volume
    3
  • fYear
    2009
  • fDate
    12-15 July 2009
  • Firstpage
    1504
  • Lastpage
    1509
  • Abstract
    Clustering Web search results will help users finding relevant information quickly. Suffix tree clustering (STC) algorithm is well fit for clustering Web documents. This paper puts forward an improved Web search results clustering algorithm based on STC. It uses latent semantic indexing method to assist finding common descriptive and meaningful topic phrases for the final document clusters. Using semantic information for clustering web snippets is able to make search engine results easy to browse and help users quickly find Web information interested. Evaluation of experiment results demonstrates that clustering Web search results based on the improved suffix tree algorithm gets better performance in cluster label quality and snippets assignment precision.
  • Keywords
    document handling; indexing; information retrieval; online front-ends; pattern clustering; search engines; semantic Web; trees (mathematics); Web browser; Web search results clustering; Web snippets; cluster label quality; clustering Web documents; document clusters; latent semantic indexing method; search engine; semantic information; snippets assignment precision; suffix tree clustering algorithm; Clustering algorithms; Cybernetics; Frequency; Indexing; Internet; Machine learning; Machine learning algorithms; Search engines; Singular value decomposition; Web search; Latent semantic indexing; Singular value decomposition; Suffix tree clustering;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Machine Learning and Cybernetics, 2009 International Conference on
  • Conference_Location
    Baoding
  • Print_ISBN
    978-1-4244-3702-3
  • Electronic_ISBN
    978-1-4244-3703-0
  • Type

    conf

  • DOI
    10.1109/ICMLC.2009.5212332
  • Filename
    5212332