Title :
Characterization of the Critical Current Capabilities of Commercial REBCO Coated Conductors for an HTS Cable-in-Conduit Conductor
Author :
De Marzi, Gianluca ; Celentano, Giuseppe ; Augieri, Andrea ; Muzzi, Luigi ; Tomassetti, Giordano ; della Corte, Antonio
Author_Institution :
Unita Tec. Fusione, ENEA, Frascati, Italy
Abstract :
In 2013, the Superconductivity Laboratory at ENEA (the Italian National Agency for New Technologies, Energy, and Economica Developments) started a project aimed at using second generation (2G) High-Temperature Superconductors (HTS) tapes for the manufacture of a cable-in-conduit conductor. The considered layouts are based on a number of HTS tapes, which are arranged as five layered structures of twisted tapes wound on a helically slotted core with an external round jacket, and the conductor is designed to target 20 kA at operating conditions (T = 5 K, B = 15 T; or T = 77 K, self-field). With the commercialization of 2G HTS tapes, several options are now available on the market that can meet the ENEA cable specifications. Thus, for a sound design of the ENEA cable, a measurement campaign was launched aiming to determine the critical current, i.e., Ic, of commercial tapes as a function of an external applied field (up to 12 T) at different temperatures (in the 5-77 K range). Transport measurements were performed at 77 K in the high-field region, whereas the low-field and low-temperature critical currents have been determined from magnetization loops measured with a vibrating sample magnetometer system. Within a COMSOL Multiphysics environment, a 2-D finite-element method (FEM) magnetostatic model has been developed, in which a uniform Ic distribution is assumed in the HTS stacks. Both the experimental and FEM results are discussed in terms of cable performance, showing that current commercial tapes can already meet the ENEA cable specifications at T = 5 K, B = 15 T.
Keywords :
barium compounds; critical currents; finite element analysis; high-temperature superconductors; magnetisation; magnetometry; magnetostatics; rare earth compounds; superconducting cables; superconducting tapes; 2-D finite-element method; COMSOL Multiphysics environment; FEM; HTS cable-in-conduit conductor; REBCO coated conductors; critical current; external applied field; external round jacket; helically slotted core; high-temperature superconductor tapes; layered structures; magnetic flux density 15 T; magnetization loops; magnetostatic model; temperature 5 K to 77 K; transport measurements; twisted tapes; vibrating sample magnetometry; Conductors; High-temperature superconductors; Integrated circuits; Magnetic field measurement; Superconducting cables; Superconducting magnets; Temperature measurement; 2D FEM magnetostatic model; CICC; Cable-in-conduit-conductor (CICC); HTS coated conductor; High temperature superconductor (HTS) coated conductor; Superconducting cable; superconducting cable; transport properties;
Journal_Title :
Applied Superconductivity, IEEE Transactions on
DOI :
10.1109/TASC.2014.2373651