DocumentCode :
50193
Title :
Photonic Transistor Design Principles for Switching Gain >=2
Author :
Krishnamurthy, Vikram ; Yijing Chen ; Seng-Tiong Ho
Author_Institution :
Data Storage Inst., Singapore, Singapore
Volume :
31
Issue :
13
fYear :
2013
fDate :
1-Jul-13
Firstpage :
2086
Lastpage :
2098
Abstract :
A novel two-staged photonic transistor with high operating speed, low switching power and high switching gain was recently proposed. Based on the manipulation of optical interference in an active directional coupler by optically controlled absorption and gain, two complementary device types were conceptually evaluated through the use of time domain technique showing ~105 times higher figure of merit compared to conventional approaches. With the joint usage of both device types, the photonic transistor could function as wavelength converter, pulse regenerator and logical operator. In this work, we identify the operational regimes of the photonic transistor that helps in reducing the footprint and operating intensities to achieve a switching gain of at least ~ 2 (or 3 dB). A recently proposed theoretical framework that calculates the spatial profiles of optical fields and complex permittivities seen by them in photonic structures with multiple active and passive sections is utilized for the purposes. We show that the operational intensity and wavelengths of interacting fields in the photonic transistor must be such that α0L1 > = 26 and g0L2 > = 3.2 to achieve a switching gain > = 2, where α0 = absorption coefficient of the short wavelength, g0 = pumped medium gain coefficient seen by long wavelength beams, L1 = length of first stage and L2 = length of second stage.
Keywords :
field effect transistors; integrated optics; light interference; optical directional couplers; optical switches; permittivity; absorption coefficient; active directional coupler; complex permittivity; logical operator; operational intensity; optical interference; optically controlled absorption; optically controlled gain; photonic structures; pulse regenerator; switching gain; time domain technique; two-staged photonic transistor; wavelength converter; Absorption; Laser beams; Laser excitation; Optical switches; Photonics; Transistors; All-optical switch; carrier depletion; optical transistor; photonic integration; transparency; wavelength converter;
fLanguage :
English
Journal_Title :
Lightwave Technology, Journal of
Publisher :
ieee
ISSN :
0733-8724
Type :
jour
DOI :
10.1109/JLT.2013.2262134
Filename :
6514517
Link To Document :
بازگشت