DocumentCode :
503929
Title :
On (s,t)-Supereulerian Triangle Free Graphs
Author :
Li, Xiaomin ; Li, Shengyu
Author_Institution :
Dept. of Math. & Stat., Chongqing Technol. & Bus. Univ., Chongqing, China
Volume :
2
fYear :
2009
fDate :
19-21 May 2009
Firstpage :
398
Lastpage :
401
Abstract :
For two integers s ges 0 and t ges 0, G is (s,t)-supereulerian, if for every two disjoint edge-sets X sub E(G) and Y sub E(G), with |X| les s and |Y| les t, G has a spanning eulerian subgraph H with X sub E(H) and Y cap E(H) = 0. Clearly, G is supereulerian if and only if G is (0,0)-supereulerian. Here it is proved that if G is a (2 + t)-edge-connected triangle-free simple graph on n vertices with delta (G) ges n/10 + t, then when n ges 41 and t ges 1, G is (2, t)-supereulerian or can be contracted to some well classified special graphs. This result extends the result in [Journal of Graph Theory 12 (1988) 11-15].
Keywords :
graph theory; edge-connected triangle-free graph; spanning eulerian subgraph; supereulerian triangle free graph; Bonding; Educational institutions; Graph theory; Hydrogen; Mathematics; Software engineering; Statistics; (s; Collapsible graph; Reduction; Triangle-free; t)-supereulerian;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Software Engineering, 2009. WCSE '09. WRI World Congress on
Conference_Location :
Xiamen
Print_ISBN :
978-0-7695-3570-8
Type :
conf
DOI :
10.1109/WCSE.2009.49
Filename :
5319639
Link To Document :
بازگشت