DocumentCode :
506855
Title :
A New Parameter Estimation Algorithm for CARMA Models
Author :
Zhao Yong-lei ; Zheng De-zhong
Author_Institution :
Meas. Technol. & Instrum. Key Lab., Yanshan Univ., Qinhuangdao, China
Volume :
1
fYear :
2009
fDate :
14-16 Aug. 2009
Firstpage :
402
Lastpage :
404
Abstract :
A modified recursive maximum likelihood (RML) parameter estimation algorithm is presented in this paper. The white noise estimations obtained by fitting the CARMA model to the high-order controlled autoregressive(CAR) model using the recursive least squares (RLS) method. Using these white noise estimations into RML parameter estimation algorithm, which can solve the problem that parameters estimation becomes slow when the control parameters and noise parameter are tightly coupled. The modified RML parameter estimation algorithm has many advantages such as simple algorithm, small calculation amount, and high identification precision, good convergence. It can be used for on-line identification and real-time data processing, with theoretical significance and practical value.
Keywords :
autoregressive moving average processes; least squares approximations; maximum likelihood estimation; white noise; controlled autoregressive integrated moving average model; high-order controlled autoregressive model; modified recursive maximum likelihood parameter estimation algorithm; recursive least squares method; white noise estimations; Data processing; Fuzzy systems; Instruments; Least squares approximation; Maximum likelihood estimation; Parameter estimation; Predictive models; Recursive estimation; Resonance light scattering; White noise; CARMA model; Recursive Maximum likelihood algorithm; least square method;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems and Knowledge Discovery, 2009. FSKD '09. Sixth International Conference on
Conference_Location :
Tianjin
Print_ISBN :
978-0-7695-3735-1
Type :
conf
DOI :
10.1109/FSKD.2009.621
Filename :
5358551
Link To Document :
بازگشت