DocumentCode :
509105
Title :
Fault Diagnosis Method Based on PSO-optimized H-BP Neural Network
Author :
Hong, Rao ; Meizhu, Li ; Qianru, Hu
Author_Institution :
Center of Comput., Nanchang Univ., Nanchang, China
Volume :
2
fYear :
2009
fDate :
21-22 Nov. 2009
Firstpage :
272
Lastpage :
275
Abstract :
The paper combined the advantage of particle swarm optimization algorithm (PSO), the global optimizing ability of Hopfield Neural Network, and the teacher supervising features of BP neural network to construct a new equipment fault diagnosis method with higher diagnosis precision, compared with the traditional single BP neural network.
Keywords :
Hopfield neural nets; backpropagation; fault diagnosis; particle swarm optimisation; H-BP neural network; Hopfield neural network; fault diagnosis; global optimizing ability; particle swarm optimization; Acceleration; Application software; Computer networks; Fault diagnosis; Hopfield neural networks; Information technology; Intelligent networks; Iterative algorithms; Neural networks; Particle scattering; BP neural network; Fault Diagnosis; Hopfield neural network; PSO;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Information Technology Application, 2009. IITA 2009. Third International Symposium on
Conference_Location :
Nanchang
Print_ISBN :
978-0-7695-3859-4
Type :
conf
DOI :
10.1109/IITA.2009.350
Filename :
5369225
Link To Document :
بازگشت