DocumentCode :
50977
Title :
Tolerance Approach to Possibilistic Nonlinear Regression With Interval Data
Author :
Hladik, Milan ; Cerny, Martin
Author_Institution :
Dept. of Appl. Math., Charles Univ., Prague, Czech Republic
Volume :
44
Issue :
12
fYear :
2014
fDate :
Dec. 2014
Firstpage :
2509
Lastpage :
2520
Abstract :
We study possibilistic nonlinear regression models with crisp and/or interval data. Herein, the task is to compute tight interval regression parameters such that all observed output data (either crisp or interval) are covered by the range of the nonlinear interval regression function. We propose a method for determination of interval regression parameters based on the tolerance approach developed by the authors for the linear case. We define two classes of nonlinear regression models for which efficient algorithms exist. For other models, we provide some extensions allowing to calculate lower and upper bounds on the widths of the optimal interval regression parameters. We also discuss other approaches to interval regression than the possibilistic one. We illustrate the theory by examples.
Keywords :
regression analysis; interval data; optimal interval regression parameters; possibilistic nonlinear regression models; tolerance approach; Approximation algorithms; Biological system modeling; Computational modeling; Data models; Linear regression; Materials; Vectors; Interval regression; nonlinear regression; possibilistic regression; tolerance quotient;
fLanguage :
English
Journal_Title :
Cybernetics, IEEE Transactions on
Publisher :
ieee
ISSN :
2168-2267
Type :
jour
DOI :
10.1109/TCYB.2014.2309596
Filename :
6778021
Link To Document :
بازگشت