• DocumentCode
    515423
  • Title

    An adaptive affinity propagation document clustering

  • Author

    He, Yancheng ; Chen, Qingcai ; Wang, Xiaolong ; Xu, Ruifeng ; Bai, Xiaohua ; Meng, XXianjun

  • Author_Institution
    Shenzhen Grad. Sch., Dept. of Comput. Sci. & Technol., Harbin Inst. of Technol., Shenzhen, China
  • fYear
    2010
  • fDate
    28-30 March 2010
  • Firstpage
    1
  • Lastpage
    7
  • Abstract
    The standard affinity propagation clustering algorithm suffers from one limitation that it is hard to know the value of the parameter ¿preference¿ which can yield an optimal clustering solution. To overcome this limitation, in this paper we proposes an adaptive affinity propagation method. The method first finds out the range of ¿preference¿, then searches the space of ¿preference¿ to find a good value which can optimize the clustering result. We apply the method to document clustering and compare it with the standard affinity propagation and K-Means clustering method in real data sets. Experimental results show that our proposed method can get better clustering result.
  • Keywords
    document handling; pattern clustering; K-means clustering; adaptive affinity propagation; document clustering; preference parameter; Clustering algorithms; Clustering methods; Computer science; Gene expression; Helium; Optimization methods; Self organizing feature maps; Standards development; Upper bound; Affinity propagation; adaptive clustering; document clustering; vector space model;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Informatics and Systems (INFOS), 2010 The 7th International Conference on
  • Conference_Location
    Cairo
  • Print_ISBN
    978-1-4244-5828-8
  • Type

    conf

  • Filename
    5461817