Title :
An adaptive affinity propagation document clustering
Author :
He, Yancheng ; Chen, Qingcai ; Wang, Xiaolong ; Xu, Ruifeng ; Bai, Xiaohua ; Meng, XXianjun
Author_Institution :
Shenzhen Grad. Sch., Dept. of Comput. Sci. & Technol., Harbin Inst. of Technol., Shenzhen, China
Abstract :
The standard affinity propagation clustering algorithm suffers from one limitation that it is hard to know the value of the parameter ¿preference¿ which can yield an optimal clustering solution. To overcome this limitation, in this paper we proposes an adaptive affinity propagation method. The method first finds out the range of ¿preference¿, then searches the space of ¿preference¿ to find a good value which can optimize the clustering result. We apply the method to document clustering and compare it with the standard affinity propagation and K-Means clustering method in real data sets. Experimental results show that our proposed method can get better clustering result.
Keywords :
document handling; pattern clustering; K-means clustering; adaptive affinity propagation; document clustering; preference parameter; Clustering algorithms; Clustering methods; Computer science; Gene expression; Helium; Optimization methods; Self organizing feature maps; Standards development; Upper bound; Affinity propagation; adaptive clustering; document clustering; vector space model;
Conference_Titel :
Informatics and Systems (INFOS), 2010 The 7th International Conference on
Conference_Location :
Cairo
Print_ISBN :
978-1-4244-5828-8