DocumentCode :
519158
Title :
Parameter identification of a Linear Permanent Magnet motor using Particle Swarm Optimization
Author :
Therdbankerd, Tithiwat ; Sanposh, Peerayot ; Chayopitak, Nattapon ; Fujita, Hideaki
Author_Institution :
Dept. of Electr. Eng., Kasetsart Univ., Bangkok, Thailand
fYear :
2010
fDate :
19-21 May 2010
Firstpage :
173
Lastpage :
177
Abstract :
Accurate and effective parameter identification is an important engineering task in high performance control system design. One emerging approach to effectively identify such nonlinear or dynamic unknown parameters is to use Particle Swarm Optimization (PSO) algorithm. Linear Permanent Magnet (LPM) motor is a high performance actuator employed in many applications that require direct linear motion without mechanical transmission for high acceleration and accurate positioning. Therefore, accurate motor parameters are necessary to effectively control the LPM motors. This paper proposes a simple PSO based method with chirp inputs to identify the LPM motor´s parameters. The simulations and experiments are conducted to verify the results and determine the effectiveness of the proposed method.
Keywords :
linear motors; parameter estimation; particle swarm optimisation; permanent magnet motors; LPM motors; direct linear motion; high performance control system design; linear permanent magnet motor; parameter identification; particle swarm optimization; Chirp; Control systems; Intelligent robots; Laboratories; Parameter estimation; Particle swarm optimization; Permanent magnet motors; Robotics and automation; Signal processing; Synchronous motors; Linear Permanent Magnet Motor; Parameter Identification; Particle Swarm Optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), 2010 International Conference on
Conference_Location :
Chaing Mai
Print_ISBN :
978-1-4244-5606-2
Electronic_ISBN :
978-1-4244-5607-9
Type :
conf
Filename :
5491507
Link To Document :
بازگشت