• DocumentCode
    52010
  • Title

    Vanishingly Sparse Matrices and Expander Graphs, With Application to Compressed Sensing

  • Author

    Bah, Bubacarr ; Tanner, Jared

  • Author_Institution
    Lab. for Inf. & Inference Syst., Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland
  • Volume
    59
  • Issue
    11
  • fYear
    2013
  • fDate
    Nov. 2013
  • Firstpage
    7491
  • Lastpage
    7508
  • Abstract
    We revisit the probabilistic construction of sparse random matrices where each column has a fixed number of nonzeros whose row indices are drawn uniformly at random with replacement. These matrices have a one-to-one correspondence with the adjacency matrices of fixed left degree expander graphs. We present formulas for the expected cardinality of the set of neighbors for these graphs, and present tail bounds on the probability that this cardinality will be less than the expected value. Deducible from these bounds are similar bounds for the expansion of the graph which is of interest in many applications. These bounds are derived through a more detailed analysis of collisions in unions of sets. Key to this analysis is a novel dyadic splitting technique. The analysis led to the derivation of better order constants that allow for quantitative theorems on existence of lossless expander graphs and hence the sparse random matrices we consider and also quantitative compressed sensing sampling theorems when using sparse nonmean-zero measurement matrices.
  • Keywords
    compressed sensing; graph theory; probability; sparse matrices; adjacency matrices; compressed sensing; dyadic splitting technique; expander graphs; expected value; probabilistic construction; sparse non mean zero measurement matrices; sparse random matrices; Bipartite graph; Compressed sensing; Probabilistic logic; Sparse matrices; Vectors; Algorithms; compressed sensing; expander graphs; signal processing; sparse matrices;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2013.2274267
  • Filename
    6565363