Title :
Bipartite Graph Partition Problems into Cycles
Author_Institution :
Coll. of Math & Phys., Nanjing Univ. of Inf. Sci. & Technol., Nanjing, China
Abstract :
In this article, we consider the following problem: Given a bipartite graph G and a positive integer k, when does G contain exactly k vertex-disjoint cycles? We will prove that if G = (V1, V2, E) is a bipartite graph with |V1| = |V2| = n ≥ 2k + 1 and δ1.1 (G) ≥ 2[n/2] + 2, then G contains exactly k vertex-disjoint cycles.
Keywords :
graph theory; bipartite graph partition problems; positive integer; vertex-disjoint cycles; Bipartite graph; Educational institutions; Information science; Physics computing; Postal services; bipartite graph; cycle; partition;
Conference_Titel :
Information and Computing (ICIC), 2010 Third International Conference on
Conference_Location :
Wuxi, Jiang Su
Print_ISBN :
978-1-4244-7081-5
Electronic_ISBN :
978-1-4244-7082-2
DOI :
10.1109/ICIC.2010.53