DocumentCode :
523196
Title :
Advanced classification methods for improving the automatic diagnosis of the hepatocellular carcinoma, based on ultrasound images
Author :
Mitrea, D. ; Nedevschi, S. ; Lupsor, M. ; Socaciu, M. ; Badea, R.
Author_Institution :
Comput. Sci. Dept., Tech. Univ. of Cluj-Napoca, Cluj-Napoca, Romania
Volume :
2
fYear :
2010
fDate :
28-30 May 2010
Firstpage :
1
Lastpage :
6
Abstract :
The hepatocellular carcinoma (HCC) is the most frequent malignant liver tumor. Nowadays, the only reliable method for the detection of HCC is the needle biopsy, but it is invasive, dangerous for the patient. We aim to elaborate a non-invasive method for the automatic diagnosis of HCC, based only on computerized techniques for ultrasound image analysis. Thus, we elaborated the imagistic textural model of HCC, consisting in the exhaustive set of the textural parameters, relevant for HCC characterization, and in their specific values for the HCC class. In this work, we study the effect of the classifier combination procedures on the improvement of the recognition performance, from speed and accuracy points of view. Various combination schemes are considered, and their influence on the accuracy parameters and on the learning curves is discussed. The role of the dimensionality reduction methods in the improvement of the automatic diagnosis process is discussed as well.
Keywords :
Benign tumors; Cancer; Fractals; Image texture analysis; Liver neoplasms; Principal component analysis; Support vector machines; Ultrasonic imaging; Voting; Wavelet transforms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automation Quality and Testing Robotics (AQTR), 2010 IEEE International Conference on
Conference_Location :
Cluj-Napoca, Romania
Print_ISBN :
978-1-4244-6724-2
Type :
conf
DOI :
10.1109/AQTR.2010.5520791
Filename :
5520791
Link To Document :
بازگشت