Title :
A simulation study of invariant second-order reduced-bias Extreme value index estimators
Author :
Gomes, M. Ivette ; Henriques-Rodrigues, Lígia ; Miranda, Cristina
Author_Institution :
Fac. de Cienc., Univ. de Lisboa, Lisbon, Portugal
Abstract :
In this paper, we deal with corrected-bias estimation of a positive extreme value index (EVI), the primary parameter in Statistics of Extremes. Under this context, the classical EVI-estimators are the Hill estimators, based on an intermediate number k of top order statistics. But the Hill estimators are not location-invariant, contrarily to the PORT-Hill estimators, which depend on an extra tuning parameter q, with 0 ≤ q <; 1. On the basis of second-order minimum-variance reduced-bias (MVRB) EVI-estimators, we shall here consider and study, through Monte-Carlo simulation, the new PORT-MVRB EVI-estimators.
Keywords :
Monte Carlo methods; estimation theory; invariance; reduced order systems; Monte-Carlo simulation; PORT-Hill estimators; invariant second order reduced bias extreme value index estimators; second order minimum variance reduced bias extreme value index; statistics of extremes; top order statistics; tuning parameter; Information technology; Manganese; Statistics of extremes; bias reduction; extreme value index; heavy tails; invariance; semi-parametric estimation;
Conference_Titel :
Information Technology Interfaces (ITI), 2010 32nd International Conference on
Conference_Location :
Cavtat/Dubrovnik
Print_ISBN :
978-1-4244-5732-8