• DocumentCode
    527469
  • Title

    Convergence rate of quantum algorithm for multivariate approximation

  • Author

    Long, Jingfan ; Zhang, Sheng ; Ye, Peixin

  • Author_Institution
    Beijing Inf. Sci. & Technol. Univ., Beijing, China
  • Volume
    1
  • fYear
    2010
  • fDate
    10-12 Aug. 2010
  • Firstpage
    210
  • Lastpage
    214
  • Abstract
    We estimate the convergence rate of quantum algorithm for approximation from some smooth functions in the Lq([0, 1]d) norm for 1 ≤ q ≤ ∞. It turns out that for the Sobolev class B(Wpr([0, 1]d)) (r ∈ ℕd), when p <; q, the quantum algorithms can bring speedup over classical deterministic and randomized algorithms.
  • Keywords
    convergence of numerical methods; deterministic algorithms; function approximation; quantum computing; convergence rate; deterministic algorithm; multivariate approximation; quantum algorithm; randomized algorithm; smooth function; sobolev class; Approximation algorithms; Complexity theory; Convergence; Function approximation; Neodymium; Quantum computing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Natural Computation (ICNC), 2010 Sixth International Conference on
  • Conference_Location
    Yantai, Shandong
  • Print_ISBN
    978-1-4244-5958-2
  • Type

    conf

  • DOI
    10.1109/ICNC.2010.5582913
  • Filename
    5582913