• DocumentCode
    53010
  • Title

    Process-Induced Degradation of SiO _{\\bf 2} and a-Si:H Passivation Layers for Photovoltaic Applications

  • Author

    O´Sullivan, B.J. ; Bearda, T. ; Nadupalli, S. ; Labie, R. ; Baert, K. ; Gordon, I. ; Poortmans, Jozef

  • Author_Institution
    IMEC, Leuven, Belgium
  • Volume
    4
  • Issue
    5
  • fYear
    2014
  • fDate
    Sept. 2014
  • Firstpage
    1197
  • Lastpage
    1203
  • Abstract
    The passivation characteristics of thermally grown silicon dioxide (SiO2) and hydrogenated amorphous silicon (a-Si:H) layers are investigated, using a combination of photoluminescence and capacitance-voltage analysis techniques. Key findings are the significant passivation degradation of SiO2 and a-Si:H layers induced by metallization through electron beam evaporation. The degradation correlates with an increase in silicon dangling bond defect density at the interface with silicon (for both SiO2 and a-Si:H) or in the passivation layer (a-Si:H). Performing the metallization by thermal evaporation is an effective method to avoid such process-induced damage, as is forming gas annealing at 450°C, which effectively recovers the interface characteristics of SiO2 layers. Deposition of amorphous silicon on a thermal SiO2 layer induces bulk and interface defects in the SiO2 layer-but in this case, a 450°C forming gas anneal is not possible due to the thermal budget limitations of a-Si:H, thereby posing problems for solar cell structures which rely on a combination of PECVD a-Si:H and thermal SiO2 passivation layers.
  • Keywords
    amorphous semiconductors; annealing; chemical vapour deposition; dangling bonds; elemental semiconductors; hydrogen; metallisation; passivation; photoluminescence; semiconductor growth; semiconductor thin films; silicon; silicon compounds; solar cells; vacuum deposition; PECVD; SiO2-Si:H; a-Si:H layers; amorphous silicon deposition; capacitance-voltage analysis techniques; electron beam evaporation; forming gas annealing; hydrogenated amorphous silicon layers; interface characteristics; interface defects; metallization; passivation degradation; photoluminescence; photovoltaic applications; process-induced damage; process-induced degradation; silicon dangling bond defect density; solar cell structures; temperature 450 degC; thermal budget limitations; thermal evaporation; thermal passivation layers; thermally grown silicon dioxide; Aluminum; Annealing; Degradation; Metallization; Passivation; Silicon; Capacitance--voltage (C--V); Capacitance??voltage (C??V); dangling bond defects; passivation layer; photoluminescence (PL); recombination;
  • fLanguage
    English
  • Journal_Title
    Photovoltaics, IEEE Journal of
  • Publisher
    ieee
  • ISSN
    2156-3381
  • Type

    jour

  • DOI
    10.1109/JPHOTOV.2014.2326711
  • Filename
    6834759