DocumentCode :
531447
Title :
Selecting Behavior on Repeated Local Effect Functions
Author :
Igoshi, Kazuho ; Miura, Takao
Author_Institution :
Dept.of Electr. & Electr. Eng., HOSEI Univ., Tokyo, Japan
Volume :
2
fYear :
2010
fDate :
Aug. 31 2010-Sept. 3 2010
Firstpage :
229
Lastpage :
233
Abstract :
In this study, under multi-agent environment, we introduce a notion of probabilistic Nash equilibrium into reinforcement learning method. Here we take an approach of mixed Nash strategy based on correlated technique in terms of Local Effect functions. We examine some experiment results to show some ideal properties for cooperative approach.
Keywords :
learning (artificial intelligence); multi-agent systems; probability; correlated technique; local effect functions; multiagent environment; probabilistic Nash equilibrium; reinforcement learning method; repeated local effect functions; selecting behavior; Local Effect Games; Multi-Agent System; Nash equilibrium;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM International Conference on
Conference_Location :
Toronto, ON
Print_ISBN :
978-1-4244-8482-9
Electronic_ISBN :
978-0-7695-4191-4
Type :
conf
DOI :
10.1109/WI-IAT.2010.166
Filename :
5616284
Link To Document :
بازگشت