DocumentCode :
533225
Title :
A revised AdaBoost algorithm: FM-AdaBoost
Author :
Zhang, Yanfeng ; He, Peikun
Author_Institution :
Sch. of Inf. & Electron., Beijing Inst. of Technol., Beijing, China
Volume :
11
fYear :
2010
fDate :
22-24 Oct. 2010
Abstract :
In view of ensemble equivalence, this paper proposes a revised AdaBoost algorithm: FM-AdaBoost. It can ensure the ensemble error rates are the least by F-module, which filter classifiers after all of the iteration finish. At the same time, with the optional M-module it can ensure the training error rates decreases monotonously, which improves the training velocity effectively. In the end, simulation results show the algorithm is valid.
Keywords :
iterative methods; learning (artificial intelligence); pattern classification; F-module; FM AdaBoost; ensemble error rate; filter classifiers; iteration finish; optional M-module; revised AdaBoost algorithm; training error rates; Accuracy; Algorithm design and analysis; Boosting; Classification algorithms; Error analysis; Training; AdaBoost; classifier; ensemble of classifiers;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Application and System Modeling (ICCASM), 2010 International Conference on
Conference_Location :
Taiyuan
Print_ISBN :
978-1-4244-7235-2
Electronic_ISBN :
978-1-4244-7237-6
Type :
conf
DOI :
10.1109/ICCASM.2010.5623209
Filename :
5623209
Link To Document :
بازگشت