DocumentCode :
536013
Title :
The global existence for diffusion equations with small delay
Author :
Xunwu, Yin
Author_Institution :
Coll. of Sci., Tianjin Polytech. Univ., Tianjin, China
Volume :
2
fYear :
2010
fDate :
9-10 Oct. 2010
Firstpage :
391
Lastpage :
394
Abstract :
In this article, we prove that for scalar dissipative delay-diffusion equations ut - Δu = f(u(t),u(t - τ)) with a small delay, there exists a global mild solution. Our main theory is the fundamental theorem on sectorial operators in. We choose A = -Δ,W = L2(Ω),D(Δ½) = H01(Ω). Imposing some condition on the nonlinear f, we first make use of the fixed point principle to prove the local existence and uniqueness theorem for mild solutions of the Initial-Bounded Value Problem. Then taking the inner-product in L2 (Ω) of both sides of equation with - Δu, we utilize The Energy Method to prove the global existence.
Keywords :
delays; fixed point arithmetic; initial value problems; reaction-diffusion systems; energy method; fixed point principle; global existence; initial-bounded value problem; scalar dissipative delay-diffusion equations; scalar reaction-diffusion equations; sectorial operators; diffusion equations with small delay; fixed point principle; sectorial operators;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Future Information Technology and Management Engineering (FITME), 2010 International Conference on
Conference_Location :
Changzhou
Print_ISBN :
978-1-4244-9087-5
Type :
conf
DOI :
10.1109/FITME.2010.5656249
Filename :
5656249
Link To Document :
بازگشت