DocumentCode :
53622
Title :
Digitally Controlled Pulse Width Modulator for On-Chip Power Management
Author :
Vaisband, Inna ; Azhar, Mahmood ; Friedman, Eby G. ; Kose, Selcuk
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Rochester, Rochester, NY, USA
Volume :
22
Issue :
12
fYear :
2014
fDate :
Dec. 2014
Firstpage :
2527
Lastpage :
2534
Abstract :
A digitally controlled current starved pulse width modulator (PWM) is described in this paper. The current from the power grid to the ring oscillator is controlled by a header circuit. By changing the header current, the pulse width of the switching signal generated at the output of the ring oscillator is dynamically controlled, permitting the duty cycle to vary between 25% and 90%. A duty cycle to voltage converter is used to ensure the accuracy of the system under process, voltage, and temperature (PVT) variations. A ring oscillator with two header circuits is proposed to control both duty cycle and frequency of the operation. Analytic closed-form expressions for the operation of a PWM are provided. The accuracy and performance of the proposed PWM is evaluated with 22-nm CMOS predictive technology models under PVT variations. An error of less than 3.1% and 4.4% in the duty cycle, respectively, with and without constant frequency control is reported for the PWM. A constant operation frequency with less than 1.25% period variation is demonstrated. The proposed PWM is appropriate for dynamic voltage scaling systems due to the small on-chip area and high accuracy under PVT variations.
Keywords :
CMOS integrated circuits; PWM power convertors; low-power electronics; oscillators; CMOS predictive technology models; current starvation; digitally controlled pulse width modulator; duty cycle to voltage converter; dynamic voltage scaling; header current; on-chip power management; ring oscillator; size 22 nm; Delays; Inverters; MOSFET; Pulse width modulation; Ring oscillators; Switching circuits; Current starvation; digital-controlled oscillators; pulse width modulation; ring oscillators; ring oscillators.;
fLanguage :
English
Journal_Title :
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-8210
Type :
jour
DOI :
10.1109/TVLSI.2013.2294402
Filename :
6705642
Link To Document :
بازگشت