DocumentCode :
536341
Title :
Research on motion segmentation by integrating maximizer of the posterior marginals with MAP
Author :
Linghu, Yong-Fang ; Shu, Heng
Author_Institution :
Guizhou Colloge of Finance & Econ., Guiyang, China
Volume :
1
fYear :
2010
fDate :
29-31 Oct. 2010
Firstpage :
137
Lastpage :
141
Abstract :
A novel video motion object automatic segmentation algorithm based on Gaussian Markov random field is studied in this paper. In this algorithm, the probability density functions of the different images are estimated as Gaussian mixture distributions, moving object detection algorithm based on integrating maximizer of the posterior marginals with MAP. Firstly, initial segmentation is applied to obtain number of the initial motions and the corresponding initial parameters of the motion model. Then the parameters are updated by using the given parameter estimation method. The experiment results show that the proposed algorithm here is effective.
Keywords :
Gaussian distribution; image motion analysis; image segmentation; object detection; parameter estimation; Gaussian Markov random field; Gaussian mixture distributions; moving object detection algorithm; parameter estimation method; probability density function; video motion object segmentation; Computational efficiency; Image segmentation; Motion segmentation; Robustness; Gibbs Random Field; MAP algorithm; Maximizer of the Posterior Marginals; Moving object segmentation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on
Conference_Location :
Xiamen
Print_ISBN :
978-1-4244-6582-8
Type :
conf
DOI :
10.1109/ICICISYS.2010.5658732
Filename :
5658732
Link To Document :
بازگشت