DocumentCode :
537340
Title :
Image Processing by Invariant Moments: Texture Segmentation Based on Pseudo Jacobi-Fourier Moments
Author :
Guleng Amu ; Li, Kaizhi ; Hasi, Surong
Author_Institution :
Dept. of Phys., Inner Mongolia Agric. Univ., Huhhot, China
fYear :
2010
fDate :
7-9 Nov. 2010
Firstpage :
1
Lastpage :
4
Abstract :
Texture segmentation by Pseudo Jacobi -Fourier moments is presented in this paper. Given a window size, moments for each pixel in the image are computed within small local windows, and then texture feature images be obtained by using a nonlinear transducer. Finally, each pixel in the image is classified by K-mean clustering algorithm.
Keywords :
Fourier transforms; Jacobian matrices; feature extraction; image segmentation; image texture; pattern clustering; transducers; K-mean clustering algorithm; image processing; nonlinear transducer; pseudo Jacobi-Fourier moments; texture feature images; texture segmentation; Classification algorithms; Clustering algorithms; Image segmentation; Jacobian matrices; Pattern recognition; Pixel; Support vector machine classification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
E-Product E-Service and E-Entertainment (ICEEE), 2010 International Conference on
Conference_Location :
Henan
Print_ISBN :
978-1-4244-7159-1
Type :
conf
DOI :
10.1109/ICEEE.2010.5661343
Filename :
5661343
Link To Document :
بازگشت