DocumentCode :
539119
Title :
The forward-backward Probability Hypothesis Density smoother
Author :
Mahler, R.P.S. ; Ba-Ngu Vo ; Ba-Tuong Vo
Author_Institution :
Tactical Syst., Adv. Technol. Group, Lockheed Martin MS2, Eagan, MN, USA
fYear :
2010
fDate :
26-29 July 2010
Firstpage :
1
Lastpage :
8
Abstract :
A forward-backward Probability Hypothesis Density (PHD) smoother involving forward filtering followed by backward smoothing is derived. The forward filtering is performed by Mahler´s PHD recursion. The PHD backward smoothing recursion is derived using Finite Set Statistics (FISST) and standard point process theory. Unlike the forward PHD recursion, the proposed backward PHD recursion is exact and does not require the previous iterate to be Poisson.
Keywords :
probability; smoothing methods; statistical analysis; FISST; PHD backward smoothing recursion; finite set statistics; forward filtering; forward-backward probability hypothesis density smoother; standard point process theory; Clutter; Filtering; Random variables; Smoothing methods; Target tracking; Filtering; PHD; Smoothing; finite set statistics; point processes; random sets; tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Fusion (FUSION), 2010 13th Conference on
Conference_Location :
Edinburgh
Print_ISBN :
978-0-9824438-1-1
Type :
conf
DOI :
10.1109/ICIF.2010.5711920
Filename :
5711920
Link To Document :
بازگشت