DocumentCode :
539238
Title :
Support-vector conditional density estimation for nonlinear filtering
Author :
Krauthausen, P. ; Huber, M.F. ; Hanebeck, U.D.
Author_Institution :
Intell. Sensor-Actuator-Syst. Lab. (ISAS), Karlsruhe Inst. of Technol., Karlsruhe, Germany
fYear :
2010
fDate :
26-29 July 2010
Firstpage :
1
Lastpage :
8
Abstract :
A non-parametric conditional density estimation algorithm for nonlinear stochastic dynamic systems is proposed. The contributions are a novel support vector regression for estimating conditional densities, modeled by Gaussian mixture densities, and an algorithm based on cross-validation for automatically determining hyper-parameters for the regression. The conditional densities are employed with a modified axis-aligned Gaussian mixture filter. The experimental validation shows the high quality of the conditional densities and good accuracy of the proposed filter.
Keywords :
Gaussian processes; filtering theory; nonlinear estimation; nonlinear systems; regression analysis; stochastic systems; support vector machines; axis aligned Gaussian mixture filter; nonlinear filtering; nonlinear stochastic dynamic system; nonparametric conditional density estimation algorithm; support vector regression; Approximation methods; Estimation; Ground penetrating radar; Kernel; Mathematical model; Optimization; Support vector machines; Nonlinear estimation and filtering; conditional density estimation; support vector regression;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Fusion (FUSION), 2010 13th Conference on
Conference_Location :
Edinburgh
Print_ISBN :
978-0-9824438-1-1
Type :
conf
DOI :
10.1109/ICIF.2010.5712088
Filename :
5712088
Link To Document :
بازگشت