DocumentCode
54722
Title
Toward Photon-Efficient Key Distribution Over Optical Channels
Author
Kochman, Yuval ; Ligong Wang ; Wornell, Gregory W.
Author_Institution
Res. Lab. of Electron., Massachusetts Inst. of Technol., Cambridge, MA, USA
Volume
60
Issue
8
fYear
2014
fDate
Aug. 2014
Firstpage
4958
Lastpage
4972
Abstract
This paper considers the distribution of a secret key over an optical (bosonic) channel in the regime of high photon efficiency, i.e., when the number of secret key bits generated per detected photon is high. While, in principle, the photon efficiency is unbounded, there is an inherent tradeoff between this efficiency and the key generation rate (with respect to the channel bandwidth). We derive asymptotic expressions for the optimal generation rates in the photon-efficient limit, and propose schemes that approach these limits up to certain approximations. The schemes are practical, in the sense that they use coherent or temporally entangled optical states and direct photodetection, all of which are reasonably easy to realize in practice, in conjunction with off-the-shelf classical codes.
Keywords
approximation theory; private key cryptography; quantum cryptography; quantum entanglement; approximations; asymptotic expressions; bosonic channel; channel bandwidth; coherent entangled optical states; direct photodetection; key generation rate; off-the-shelf classical codes; optical channels; optimal generation rates; photon-efficient key distribution; secret key distribution; temporally entangled optical states; Hilbert space; Optical receivers; Optical sensors; Photonics; Protocols; Quantum entanglement; Information-theoretic security; key distribution; optical communication; wiretap channel;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/TIT.2014.2331060
Filename
6835214
Link To Document