DocumentCode :
54725
Title :
Extrinsic Jensen–Shannon Divergence: Applications to Variable-Length Coding
Author :
Naghshvar, Mohammad ; Javidi, Tara ; Wigger, Michele
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of California at San Diego, La Jolla, CA, USA
Volume :
61
Issue :
4
fYear :
2015
fDate :
Apr-15
Firstpage :
2148
Lastpage :
2164
Abstract :
This paper considers the problem of variable-length coding over a discrete memoryless channel with noiseless feedback. This paper provides a stochastic control view of the problem whose solution is analyzed via a newly proposed symmetrized divergence, termed extrinsic Jensen-Shannon (EJS) divergence. It is shown that strictly positive lower bounds on EJS divergence provide nonasymptotic upper bounds on the expected code length. This paper presents strictly positive lower bounds on EJS divergence, and hence nonasymptotic upper bounds on the expected code length, for the following two coding schemes: 1) variable-length posterior matching and 2) MaxEJS coding scheme that is based on a greedy maximization of the EJS divergence. As an asymptotic corollary of the main results, this paper also provides a rate-reliability test. Variable-length coding schemes that satisfy the condition(s) of the test for parameters R and E are guaranteed to achieve a rate R and an error exponent E. The results are specialized for posterior matching and MaxEJS to obtain deterministic one-phase coding schemes achieving capacity and optimal error exponent. For the special case of symmetric binary-input channels, simpler deterministic schemes of optimal performance are proposed and analyzed.
Keywords :
channel coding; greedy algorithms; optimisation; phase coding; telecommunication network reliability; variable length codes; EJS divergence; MaxEJS coding scheme; capacity exponent; deterministic one-phase coding schemes; discrete memoryless channel; extrinsic Jensen-Shannon divergence; greedy maximization; noiseless feedback; nonasymptotic upper bounds; optimal error exponent; rate-reliability test; stochastic control view; strictly positive lower bounds; symmetric binary-input channels; variable-length coding problem; variable-length posterior matching; Channel coding; Decoding; Receivers; Transmitters; Uncertainty; Upper bound; Burnashev’s reliability function; Burnashev???s reliability function; Discrete memoryless channel; feedback gain; optimal error exponent; sequential analysis; variable-length coding;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2015.2401004
Filename :
7031961
Link To Document :
بازگشت