DocumentCode :
55222
Title :
Flexible Indoor Localization and Tracking Based on a Wearable Platform and Sensor Data Fusion
Author :
Colombo, Alessandro ; Fontanelli, Daniele ; Macii, D. ; Palopoli, Luigi
Author_Institution :
Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy
Volume :
63
Issue :
4
fYear :
2014
fDate :
Apr-14
Firstpage :
864
Lastpage :
876
Abstract :
Indoor localization and tracking of moving human targets is a task of recognized importance and difficulty. In this paper, we describe a position measurement technique based on the fusion of various sensor data collected using a wearable embedded platform. Since the accumulated measurement uncertainty affecting inertial data (especially due to the on-board accelerometer) usually makes the measured position values drift away quickly, a heuristic approach is used to keep velocity estimation uncertainty in the order of a few percent. As a result, unlike other solutions proposed in the literature, localization accuracy is good when the wearable platform is worn at the waist. Unbounded uncertainty growth is prevented by injecting the position values collected at a very low rate from the nodes of an external fixed infrastructure (e.g., based on cameras) into an extended Kalman filter. If the adjustment rate is in the order of several seconds and if such corrections are performed only when the user is detected to be in movement, the infrastructure remains idle most of time with evident benefits in terms of scalability. In fact, multiple platforms could work simultaneously in the same environment without saturating the communication channels.
Keywords :
Kalman filters; nonlinear filters; position measurement; sensor fusion; sensor placement; target tracking; extended Kalman filter; flexible indoor localization; flexible indoor tracking; human targets; inertial data; measurement uncertainty; onboard accelerometer; position measurement technique; sensor data fusion; velocity estimation uncertainty; wearable embedded platform; wearable platform; Acceleration; Accuracy; Covariance matrices; Estimation; Uncertainty; Vectors; Velocity measurement; Autonomous localization and mapping; Kalman filters; position measurement; uncertainty; wearable sensors; wireless sensor networks (WSNs);
fLanguage :
English
Journal_Title :
Instrumentation and Measurement, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9456
Type :
jour
DOI :
10.1109/TIM.2013.2283546
Filename :
6634257
Link To Document :
بازگشت